笔者博客(用tensorflow迁移学习猫狗分类)笔者讲到用tensorlayer的VGG16模型迁移学习图像分类,那麽问题来了,tensorlayer没提供的模型怎么办呢?别担心,tensorlayer提供了tensorflow中的slim模型导入功能,代码例子在tutorial_inceptionV3_tfslim。
那么什么是slim?slim到底有什么用?
slim是一个使构建,训练,评估神经网络变得简单的库。它可以消除原生tensorflow里面很多重复的模板性的代码,让代码更紧凑,更具备可读性。另外slim提供了很多计算机视觉方面的著名模型(VGG, AlexNet等),我们不仅可以直接使用,甚至能以各种方式进行扩展。(笔者注:总之功能跟tensorlayer差不多嘛)更多介绍可以看这篇文章:【Tensorflow】辅助工具篇——tensorflow slim(TF-Slim)介绍
要进行迁移学习,首先需要slim模型代码以及预训练好的权重参数,这些谷歌都有提供下载,可以看到主页下面有各个模型以及在imagenet训练集下的参数地址。
列表还列出了各个模型的top1、top5的正确率,模型很多了。
好了我们下载Inception-ResNet-v2以及inception_resnet_v2_2016_08_30.tar.gz,py文件和解压出来的.ckpt文件放到项目根目录下面。至于为什么不用tensorlayer例子提供的Inception V3?因为Inception-ResNet-v2正确率高啊。(哈哈真正原因最后来讲)。
我们依旧进行猫狗分类,按照教程导入模型修改num_classes再导入训练数据,直接训练是会报错的,因为最后的Logits层几个参数在恢复时维度不匹配。
最后几个参数是不能恢复了,笔者也没有找到选择性恢复.ckpt参数的tensorflow方法。怎么办呢?幸好群里面有位朋友提供了一个方法,参见【Tensorflow 迁移学习】:
主要思想是:先把所有.ckpt参数恢复成npz格式,再选择恢复npz中的参数,恢复npz中的参数就跟前一篇博客操作一样的了。
所以整个过程分两步走:
1.将参数恢复然后保存为npz格式:
下面是具体代码:
import os
import time
from recordutil import*
import numpy as np
# from tensorflow.contrib.slim.python.slim.nets.resnet_v2 import resnet_v2_152
# from tensorflow.contrib.slim.python.slim.nets.vgg import vgg_16
import skimage
import skimage.io
import skimage.transform
import tensorflow as tf
from tensorlayer.layers import*
# from scipy.misc import imread, imresize
# from tensorflow.contrib.slim.python.slim.nets.alexnet import alexnet_v2
from inception_resnet_v2 import(inception_resnet_v2_arg_scope, inception_resnet_v2)
from scipy.misc import imread, imresize
from tensorflow.python.ops import variables
import tensorlayer as tl
slim = tf.contrib.slim
try:
from data.imagenet_classes import*
exceptExceptionas e:
raiseException(
"{} / download the file from: https://github.com/zsdonghao/tensorlayer/tree/master/example/data".format(e))
n_epoch =200
learning_rate =0.0001
print_freq =2
batch_size =32
## InceptionV3 / All TF-Slim nets can be merged into TensorLayer
x = tf.placeholder(tf.float32, shape=[None,299,299,3])
# 输出
y_ = tf.placeholder(tf.int32, shape=[None,], name='y_')
net_in = tl.layers.InputLayer(x, name='input_layer')
with slim.arg_scope(inception_resnet_v2_arg_scope()):
network = tl.layers.SlimNetsLayer(
prev_layer=net_in,
slim_layer=inception_resnet_v2,
slim_args={
'num_classes':1001,
'is_training':True,
},
name='InceptionResnetV2'# <-- the name should be the same with the ckpt model
)
# network = fc_layers(net_cnn)
sess = tf.InteractiveSession()
network.print_params(False)
# network.print_layers()
saver = tf.train.Saver()
# 加载预训练的参数
# tl.files.assign_params(sess, npz, network)
tl.layers.initialize_global_variables(sess)
saver.restore(sess,"inception_resnet_v2.ckpt")
print("Model Restored")
all_params = sess.run(network.all_params)
np.savez('inception_resnet_v2.npz', params=all_params)
sess.close()
2.部分恢复npz参数然后训练模型:
首先我们修改模型最后一层参数,由于进行的是2分类学习,所以做如下修改:
with slim.arg_scope(inception_resnet_v2_arg_scope()):
network = tl.layers.SlimNetsLayer(
prev_layer=net_in,
slim_layer=inception_resnet_v2,
slim_args={
'num_classes':2,
'is_training':True,
},
name='InceptionResnetV2'# <-- the name should be the same with the ckpt model
)
num_classes改为2,is_training为True。
接着定义输入输出以及损失函数:
sess = tf.InteractiveSession()
# saver = tf.train.Saver()
y = network.outputs
y_op = tf.argmax(tf.nn.softmax(y),1)
cost = tl.cost.cross_entropy(y, y_, name='cost')
correct_prediction = tf.equal(tf.cast(tf.argmax(y,1), tf.float32), tf.cast(y_, tf.float32))
acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
下面是定义训练参数,我们只训练最后一层的参数,打印参数出来我们看到:
[TL] param 900:InceptionResnetV2/AuxLogits/Conv2d_2a_5x5/weights:0(5,5,128,768) float32_ref
[TL] param 901:InceptionResnetV2/AuxLogits/Conv2d_2a_5x5/BatchNorm/beta:0(768,) float32_ref
[TL] param 902:InceptionResnetV2/AuxLogits/Conv2d_2a_5x5/BatchNorm/moving_mean:0(768,) float32_ref
[TL] param 903:InceptionResnetV2/AuxLogits/Conv2d_2a_5x5/BatchNorm/moving_variance:0(768,) float32_ref
[TL] param 904:InceptionResnetV2/AuxLogits/Logits/weights:0(768,2) float32_ref
[TL] param 905:InceptionResnetV2/AuxLogits/Logits/biases:0(2,) float32_ref
[TL] param 906:InceptionResnetV2/Logits/Logits/weights:0(1536,2) float32_ref
[TL] param 907:InceptionResnetV2/Logits/Logits/biases:0(2,) float32_ref
[TL] num of params:56940900
从param 904开始训练就行了,参数恢复到param 903
下面是训练函数以及恢复部分参数,加载样本数据:
# 定义 optimizer
train_params = network.all_params[904:]
print('训练参数:', train_params)
# # 加载预训练的参数
# tl.files.assign_params(sess, params, network)
train_op = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost, var_list=train_params)
img, label = read_and_decode("D:\\001-Python\\train299.tfrecords")
# 使用shuffle_batch可以随机打乱输入
X_train, y_train = tf.train.shuffle_batch([img, label],
batch_size=batch_size, capacity=200,
min_after_dequeue=100)
tl.layers.initialize_global_variables(sess)
params = tl.files.load_npz('','inception_resnet_v2.npz')
params = params[0:904]
print('当前参数大小:', len(params))
tl.files.assign_params(sess, params=params, network=network)
下面依旧是训练模型的代码,跟上一篇一样:
# # 训练模型
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
step =0
filelist = getfilelist()
for epoch in range(n_epoch):
start_time = time.time()
val, l = sess.run([X_train, y_train])#next_data(filelist, batch_size)#
for X_train_a, y_train_a in tl.iterate.minibatches(val, l, batch_size, shuffle=True):
sess.run(train_op, feed_dict={x: X_train_a, y_: y_train_a})
if epoch +1==1or(epoch +1)% print_freq ==0:
print("Epoch %d of %d took %fs"%(epoch +1, n_epoch, time.time()- start_time))
train_loss, train_acc, n_batch =0,0,0
for X_train_a, y_train_a in tl.iterate.minibatches(val, l, batch_size, shuffle=True):
err, ac = sess.run([cost, acc], feed_dict={x: X_train_a, y_: y_train_a})
train_loss += err
train_acc += ac
n_batch +=1
print(" train loss: %f"%(train_loss / n_batch))
print(" train acc: %f"%(train_acc / n_batch))
# tl.files.save_npz(network.all_params, name='model_vgg_16_2.npz', sess=sess)
coord.request_stop()
coord.join(threads)
batchsize为20训练200代,部分结果如下:
Epoch156 of 200 took 12.568609s
train loss:0.382517
train acc:0.950000
Epoch158 of 200 took 12.457161s
train loss:0.382509
train acc:0.850000
Epoch160 of 200 took 12.385407s
train loss:0.320393
train acc:1.000000
Epoch162 of 200 took 12.489218s
train loss:0.480686
train acc:0.700000
Epoch164 of 200 took 12.388841s
train loss:0.329189
train acc:0.850000
Epoch166 of 200 took 12.446472s
train loss:0.379127
train acc:0.900000
Epoch168 of 200 took 12.888571s
train loss:0.365938
train acc:0.900000
Epoch170 of 200 took 12.850605s
train loss:0.353434
train acc:0.850000
Epoch172 of 200 took 12.855129s
train loss:0.315443
train acc:0.950000
Epoch174 of 200 took 12.906666s
train loss:0.460817
train acc:0.750000
Epoch176 of 200 took 12.830738s
train loss:0.421025
train acc:0.900000
Epoch178 of 200 took 12.852572s
train loss:0.418784
train acc:0.800000
Epoch180 of 200 took 12.951322s
train loss:0.316057
train acc:0.950000
Epoch182 of 200 took 12.866213s
train loss:0.363328
train acc:0.900000
Epoch184 of 200 took 13.012520s
train loss:0.379462
train acc:0.850000
Epoch186 of 200 took 12.934583s
train loss:0.472857
train acc:0.750000
Epoch188 of 200 took 13.038168s
train loss:0.236005
train acc:1.000000
Epoch190 of 200 took 13.056378s
train loss:0.266042
train acc:0.950000
Epoch192 of 200 took 13.016137s
train loss:0.255430
train acc:0.950000
Epoch194 of 200 took 13.013147s
train loss:0.422342
train acc:0.900000
Epoch196 of 200 took 12.980659s
train loss:0.353984
train acc:0.900000
Epoch198 of 200 took 13.033676s
train loss:0.320018
train acc:0.950000
Epoch200 of 200 took 12.945982s
train loss:0.288049
train acc:0.950000
好了,迁移学习Inception-ResNet-v2结束。
作者说SlimNetsLayer是能导入任何Slim Model的。笔者已经验证过导入Inception-ResNet-v2和VGG16成功,Inception V3导入后训练了两三天,正确率一直在10到70之间波动(跟笔者的心情一样不稳定),笔者一直找不出原因,心累,希望哪位朋友再去验证一下Inception V3咯。
关注小编,请加入昂钛客人工智能、深度学习社群。我们在这里等你,可以交流学习,案例。笔者也在这里。
加入请点击扩展链接!
本文暂时没有评论,来添加一个吧(●'◡'●)