简介
我们知道python 层作为Client 主要作用是构建GraphDef 交给 Master 处理,但很明显,我们写的 训练代码 跟GraphDef 构建工作并没有一一对应,也没有直接操作OP,这里仍然有很多的抽象工作,包括Model/Layer/feature_column/optimizer 等工作,从上到下依次是
- 构建模型,模型训练
- feature_column/layer 拼接为模型
- tensor 转换(也就是op调用)构成layer / feature_column
- op 调用 实质是 构建GraphDef。PS: 就好比 client rpc 的方法调用 实质是 socket.write
源码结构
tensorflow
c
cc // c++ 前端接口
java // java 前端接口
python // python 前端接口
layers // layer组件
feature_column // 特征列组件
training // 包括optimizer/saver 等组件
keras
estimator
client
ops // op算子
user_ops // 用户自定义算子
stream_executor // 运行时环境,对cuda和opencl进行统一封装,屏蔽他们的区别
compiler // 运行时优化,分析计算图,对op 进行融合,提升运行效率,XLA技术
contrib // 三方库,成熟后会移到core python中
core // tf的核心,基本都是c++,包括运行时、图操作、op定义、kernel实现等
结合tf 原生api(自己计算 output/loss/optimizer) 实际例子来看下
# 返回 _NumericColumn
price = numeric_column('price')
keywords_embedded = embedding_column(categorical_column_with_hash_bucket("keywords", 10K), dimensions=16)
columns = [price, keywords_embedded, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
for units in [128, 64, 32]:
dense_tensor = tf.layers.dense(dense_tensor, units, tf.nn.relu)
prediction = tf.layers.dense(dense_tensor, 1) # 也是output
feature_column
在r1.4 分支,所有关于feature_column 的代码都在这一个python 文件 tensorflow/tensorflow/python/feature_column/feature_column.py 里。
对外使用的函数
分为两类:根据feature key(str) 构建FeatureColumn;根据输入特征数据 features 和FeatureColumn 构建layer
#
# Returns a dense `Tensor` as input layer based on given `feature_columns`
def input_layer(features,feature_columns,...):
# features: A mapping from key to tensors. `_FeatureColumn`s look up via these
# keys. For example `numeric_column('price')` will look at 'price' key in
# this dict. Values can be a `SparseTensor` or a `Tensor` depends on
# corresponding `_FeatureColumn`.
...
builder = _LazyBuilder(features)
output_tensors = []
for column in sorted(feature_columns, key=lambda x: x.name):
tensor = column._get_dense_tensor(builder,...)
tensor = array_ops.reshape(tensor, shape=(batch_size, num_elements))
output_tensors.append(tensor)
return array_ops.concat(output_tensors, 1)
def linear_model(features,feature_columns,...)
def _transform_features(features, feature_columns,...)
def make_parse_example_spec(feature_columns)
# 构建FeatureColumn
def embedding_column(categorical_column, dimension,...):
...
return _EmbeddingColumn(categorical_column=categorical_column,...)
def numeric_column(key,...):
...
return _NumericColumn(key,shape=shape,...)
def bucketized_column(source_column, boundaries, ...)
def categorical_column_with_hash_bucket(key,...)
def categorical_column_with_vocabulary_file(key, vocabulary_file, vocabulary_size,...)
def crossed_column(keys, hash_bucket_size, ...)
...
FeatureColumn
_FeatureColumn specifies how to digest an input column to the network.
class _FeatureColumn(object):
def name(self):
def _transform_feature(self, inputs): # inputs 是一个_LazyBuilder,返回一个tensor
class _DenseColumn(_FeatureColumn):
def _variable_shape(self):
def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None):
class _CategoricalColumn(_FeatureColumn):
IdWeightPair = collections.namedtuple( 'IdWeightPair', ['id_tensor', 'weight_tensor'])
def _num_buckets(self):
def _get_sparse_tensors(self,inputs,...): # Returns an IdWeightPair
LazyBuilder
辅助对象 _LazyBuilder : Some feature columns require data transformations. This class caches those transformations. 此外,一些feature 也不只使用一次。
class _LazyBuilder(object):
def __init__(self, features):
self._features = features.copy() # 真正的input(dict)
self._feature_tensors = {} # 缓存作用
def get(self, key):
if key in self._feature_tensors:
# FeatureColumn is already transformed or converted.
return self._feature_tensors[key]
if key in self._features:
feature_tensor = self._get_raw_feature_as_tensor(key)
self._feature_tensors[key] = feature_tensor
return feature_tensor
... # 此时key 是一个 _FeatureColumn
column = key
transformed = column._transform_feature(self)
self._feature_tensors[column] = transformed
return transformed
从_LazyBuilder.get实现逻辑看, 先尝试从 input _features 和 _feature_tensors 查看是否包含对应的key(str),若不存在,且此时key 是一个_FeatureColumn ,则调用 key/column. _transform_feature 方法,根据_FeatureColumn.key 从_LazyBuilder 中获取 input_tensor ,并转换为 _FeatureColumn 对应的output_tensor.
class _NumericColumn(_DenseColumn,
collections.namedtuple('_NumericColumn', [
'key', 'shape', 'default_value', 'dtype',
'normalizer_fn'
])):
def _transform_feature(self, inputs):
input_tensor = inputs.get(self.key)
# 将input_tensor 转换为float 数据
return math_ops.to_float(input_tensor)
EmbeddingColumn
为了计算 [batch_size, vocab_size] * [vocab_size, embed_size] = [batch_size, embed_size] _EmbeddingColumn 聚合了 _CategoricalColumn
- 通过 _CategoricalColumn 将原始 input tensor 转换为 [batch_size, vocab_size]
- 新建一个 [vocab_size, embed_size]
- 计算 [batch_size, vocab_size] * [vocab_size, embed_size] 返回 [batch_size, embed_size]
class _EmbeddingColumn(
_DenseColumn,
collections.namedtuple('_EmbeddingColumn', (
'categorical_column', 'dimension', 'combiner', 'initializer',
'ckpt_to_load_from', 'tensor_name_in_ckpt', 'max_norm', 'trainable'
))):
def _transform_feature(self, inputs):
return inputs.get(self.categorical_column)
def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None):
# Get sparse IDs and weights. 比如构建 one-hot 向量
sparse_tensors = self.categorical_column._get_sparse_tensors( # pylint: disable=protected-access
inputs, weight_collections=weight_collections, trainable=trainable)
sparse_ids = sparse_tensors.id_tensor
sparse_weights = sparse_tensors.weight_tensor
# 新建一个 embedding_weights 权重矩阵
embedding_weights = variable_scope.get_variable(name='embedding_weights',...)
...
# 根据 sparse_ids/sparse_weights 从权重 矩阵中检索 降维后的矩阵
return _safe_embedding_lookup_sparse(embedding_weights=embedding_weights,sparse_ids=sparse_ids,sparse_weights=sparse_weights,...)
def _safe_embedding_lookup_sparse(embedding_weights,sparse_ids,sparse_weights=None,...):
... # 对输入参数 进行处理
result = embedding_ops.embedding_lookup_sparse(embedding_weights,sparse_ids,sparse_weights,...)
final_result = array_ops.reshape(result,...)
return final_result
总结一下
- 总的调用链条 input_layer ==> _FeatureColumn._get_dense_tensor ==> _LazyBuilder.get(_FeatureColumn) ==> _FeatureColumn._transform_feature ==> _LazyBuilder.get(str key) + 转换逻辑
- input_layer 负责汇总所有 _FeatureColumn 组成“特征层”,将原始input tensor 转换为 特征转换后的 给densor layer 使用的tensor
- _FeatureColumn._transform_feature 负责转换 原始 input tensor,_LazyBuilder 负责缓存
- 对于 _EmbeddingColumn 来说复杂一点_EmbeddingColumn._get_dense_tensor categorical_column._get_sparse_tensors ==> _LazyBuilder.get(categorical_column) embedding_weights = variable_scope.get_variable _safe_embedding_lookup_sparse
Variable
Variable 是一个特殊的 OP,它拥有状态 (Stateful)。从实现技术探究,Variable 的 Kernel 实现直接持有一个 Tensor 实例,其生命周期与变量一致。相对于普通的 Tensor 实例,其生命周期仅对本次迭代 (Step) 有效;而 Variable 对多个迭代都有效,甚至可以存储到文件系统,或从文件系统中恢复。
- 从设计角度看,Variable 可以看做 Tensor 的包装器,Tensor 所支持的所有操作都被Variable 重载实现。也就是说,Variable 可以出现在 Tensor 的所有地方。
- 存在几个操作 Variable 的特殊 OP 用于修改变量的值,例如 Assign, AssignAdd 等。Variable 所持有的 Tensor 以引用的方式输入到 Assign 中,Assign 根据初始值 (Initial Value)或新值,就地修改 Tensor 内部的值,最后以引用的方式输出该 Tensor。
W = tf.Variable(tf.zeros([784,10]), name='W') ,TensorFlow 设计了一个精巧的变量初始化模型。
- 初始值,tf.zeros 称为 Variable 的初始值,,它确定了 Variable 的类型为 int32,且 Shape为 [784, 10]。
- 初始化器,,变量通过初始化器 (Initializer) 在初始化期间,将初始化值赋予 Variable 内部所持有 Tensor,完成 Variable 的就地修改。W.initializer 实际上为 Assign的 OP,这是 Variable 默认的初始化器。更为常见的是,通过调用 tf.global_variables_initializer() 将所有变量的初始化器进行汇总,然后启动 Session 运行该 OP。
- 事实上,搜集所有全局变量的初始化器的 OP 是一个 NoOp,即不存在输入,也不存在输出。所有变量的初始化器通过控制依赖边与该 NoOp 相连,保证所有的全局变量被初始化。
# tensorflow/tensorflow/python/ops/variables.py
class Variable(object):
def __init__(self, initial_value=None, trainable=True,collections=None, name=None, dtype=None):
...
self._init_from_args(initial_value=initial_value,trainable=trainable,...)
def _init_from_args(self,initial_value=None,...):
...
self._variable = state_ops.variable_op_v2(shape,self._initial_value.dtype.base_dtype,name=name)
self._initializer_op = state_ops.assign(self._variable,self._build_initializer_expr(self._initial_value),...)
def read_value(self):
return array_ops.identity(self._variable, name="read")
def eval(self, session=None):
return self._variable.eval(session=session)
def assign(self, value, use_locking=False):
return state_ops.assign(self._variable, value, use_locking=use_locking)
def assign_add(self, delta, use_locking=False):
return state_ops.assign_add(self._variable, delta, use_locking=use_locking)
class PartitionedVariable(object):
Variable 由_VariableStore 管理
# tensorflow/tensorflow/python/ops/variable_scope.py
class _VariableStore(object):
def __init__(self):
"""Create a variable store."""
self._vars = {} # A dictionary of the stored TensorFlow variables.
self._partitioned_vars = {} # A dict of the stored PartitionedVariables.
self.variable_scopes_count = {} # Count re-used variable scopes.
def get_variable(self, name, shape=None, dtype=dtypes.float32,...):
def _true_getter(name, shape=None, dtype=dtypes.float32,...):
if partitioner is not None and not is_scalar:
return self._get_partitioned_variable(name=name,shape=shape,dtype=dtype,...)
return self._get_single_variable(name=name, shape=shape, dtype=dtype,...)
if custom_getter is not None:
return custom_getter(**custom_getter_kwargs)
else:
return _true_getter(name, shape=shape, dtype=dtype,...)
def _get_single_variable(self,name,shape=None,...):
if name in self._vars:
found_var = self._vars[name]
return found_var
if use_resource:
v = resource_variable_ops.ResourceVariable(initial_value=init_val,name=name,...)
else:
v = variables.Variable(initial_value=init_val,name=name,...)
self._vars[name] = v
return v
Layer
A layer is a class implementing common neural networks operations, such as convolution, batch norm, etc. These operations require managing variables,losses, and updates, as well as applying TensorFlow ops to input tensors. Users will just instantiate it and then treat it as a callable.
# tensorflow/tensorflow/python/layers/base.py
class Layer(object):
def __init__(self, trainable=True, name=None, dtype=None,activity_regularizer=None, **kwargs):
self.trainable = trainable # Whether the layer should be trained (boolean).
self.built = False
self.input_spec = None # specifying the constraints on inputs that can be accepted by the layer.
self._trainable_weights = [] # List of trainable variables.
self._non_trainable_weights = [] # List of non-trainable variables.
self._updates = [] # List of update ops of this layer.
self._losses = [] # List of losses added by this layer.
self._reuse = kwargs.get('_reuse')
self._graph = ops.get_default_graph()
self._dtype = ... # Default dtype of the layer (default of `None` means use the type of the first input).
self._name = ... # The name of the layer (string).
self._scope = ...
def add_variable(self, name, shape, dtype=None,...):
...
variable = vs.get_variable(name,shape=shape,...)
if variable in existing_variables:
return variable
if trainable:
self._trainable_weights.append(variable)
else:
self._non_trainable_weights.append(variable)
return variable
def __call__(self, inputs, *args, **kwargs):
...
if not self.built:
self.build(input_shapes)
...
outputs = self.call(inputs, *args, **kwargs)
...
# Add an inbound node to the layer, so it can keep track of this call.
self._add_inbound_node(input_tensors=inputs, output_tensors=outputs, arguments=user_kwargs)
...
self.built = True
return outputs
# 一般由子类覆盖
def call(self, inputs, **kwargs):
return inputs
def apply(self, inputs, *args, **kwargs):
return self.__call__(inputs, *args, **kwargs)
执行逻辑 : Layer() ==> Layer. call ==> Layer.call。 这个其实也就是 机器学习中的forward 逻辑,至于backward 逻辑 则是在 OP 粒度 在数据流图层面 自动实现。
Dense Layer 实现了计算 outputs = activation(inputs * kernel + bias) 的逻辑。
# tensorflow/tensorflow/python/layers/core.py
class Dense(base.Layer):
def build(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape)
self.input_spec = base.InputSpec(min_ndim=2, axes={-1: input_shape[-1].value})
self.kernel = self.add_variable('kernel',shape=[input_shape[-1].value, self.units],...)
if self.use_bias:
self.bias = self.add_variable('bias',shape=[self.units,],...)
else:
self.bias = None
self.built = True
def call(self, inputs):
inputs = ops.convert_to_tensor(inputs, dtype=self.dtype)
...
outputs = standard_ops.matmul(inputs, self.kernel)
if self.use_bias:
outputs = nn.bias_add(outputs, self.bias)
if self.activation is not None:
return self.activation(outputs) # pylint: disable=not-callable
return outputs
def dense(inputs, units,activation=None,...):
layer = Dense(units,activation=activation,use_bias=use_bias,...)
return layer.apply(inputs)
Optimizer
tensorflow optimizer源码阅读笔记
# tensorflow/tensorflow/python/training/optimizer.py
class Optimizer(object):
def minimize(self, loss, global_step=None, var_list=None,...):
grads_and_vars = self.compute_gradients(loss, var_list=var_list, ...)
vars_with_grad = [v for g, v in grads_and_vars if g is not None]
return self.apply_gradients(grads_and_vars, global_step=global_step,name=name)
# Compute gradients of `loss` for the variables in `var_list
def compute_gradients(self, loss, var_list=None,...):
...
# 根据原本计算图中所有的 op创建一个顺序的list,然后反向遍历这个list,对每个需要求导并且能够求导的op(即已经定义好了对应的梯度函数的op)调用其梯度函数,然后沿着原本计算图的方向反向串起另一部分的计算图(输入输出互换,原本的数据 Tensor 换成梯度 Tensor)
grads = gradients.gradients(loss, var_refs, grad_ys=grad_loss,...)
grads_and_vars = list(zip(grads, var_list))
return grads_and_vars
# apply_gradients函数根据前面求得的梯度,把梯度更新到参数上
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
converted_grads_and_vars = []
for g, v in grads_and_vars:
if g is not None:
# Convert the grad to Tensor or IndexedSlices if necessary.
g = ops.convert_to_tensor_or_indexed_slices(g)
# _get_processor函数可理解为一种快速更新variables的方法,每个processor都会包含一个update_op这样的函数来进行variable更新操作
p = _get_processor(v)
converted_grads_and_vars.append((g, v, p))
converted_grads_and_vars = tuple(converted_grads_and_vars)
var_list = [v for g, v, _ in converted_grads_and_vars if g is not None]
# 创建一些优化器自带的一些参数,比如AdamOptimizer的m和v
self._create_slots([_get_variable_for(v) for v in var_list])
update_ops = []
self._prepare()
for grad, var, processor in converted_grads_and_vars:
update_ops.append(processor.update_op(self, grad)) # 核心部分
if global_step is None:
apply_updates = self._finish(update_ops, name)
else:
with ops.control_dependencies([self._finish(update_ops, "update")]): # 用来控制计算流图的,给图中的某些节点指定计算的顺序
with ops.colocate_with(global_step): # 保证每个参数var的更新都在同一个device上
apply_updates = state_ops.assign_add(global_step, 1, name=name).op
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
if apply_updates not in train_op:
train_op.append(apply_updates)
return apply_updates
def _resource_apply_sparse_duplicate_indices(self, grad, handle, indices):
# _deduplicate_indexed_slices 处理重复的index, 如果当前batch的行号是[0, 201, 201, 301],有重复的index号怎么办呢?其实只需将重复位置的梯度加起来即可(_deduplicate_indexed_slices)。
summed_grad, unique_indices = _deduplicate_indexed_slices(values=grad, indices=indices)
return self._resource_apply_sparse(summed_grad, handle, unique_indices)
def _create_slots(self, var_list):
pass
apply_gradients()核心的部分就是对每个 variable 本身应用 assign,体现在 update_ops.append(processor.update_op(self, grad))
# tensorflow/tensorflow/python/training/optimizer.py
def _get_processor(v):
"""The processor of v."""
if context.in_eager_mode():
return _DenseResourceVariableProcessor(v)
if v.op.type == "VarHandleOp":
return _DenseResourceVariableProcessor(v)
if isinstance(v, variables.Variable):
return _RefVariableProcessor(v)
if v.op.type == "SubmodelPort":
return _StreamingModelPortProcessor(v)
raise NotImplementedError("Trying to optimize unsupported type ", v)
class _DenseResourceVariableProcessor(_OptimizableVariable):
"""Processor for dense ResourceVariables."""
def __init__(self, v):
self._v = v
def target(self):
return self._v
def update_op(self, optimizer, g):
if isinstance(g, ops.IndexedSlices):
return optimizer._resource_apply_sparse_duplicate_indices(g.values, self._v, g.indices) # ==> _resource_apply_sparse
update_op = optimizer._resource_apply_dense(g, self._v)
return update_op
Optimizer 基类的这个方法为每个实现子类预留了_create_slots(),_prepare(),_apply_dense(),_apply_sparse()四个接口出来,后面新构建的 Optimizer 只需要重写或者扩展 Optimizer 类的某几个函数即可。
tensorflow分布式源码解读4:AdamOptimizer 原生的tf 根据 梯度/grad 的类型 来决定更新weight/ variable 的方法,当传来的梯度是普通tensor时,调用_apply_dense方法去更新参数;当传来的梯度是IndexedSlices类型时,则去调用optimizer._apply_sparse_duplicate_indices函数。Embedding 参数的梯度中包含每个 tensor 中发生变化的数据切片 IndexedSlices。IndexedSlices类型是一种可以存储稀疏矩阵的数据结构,只需要存储对应的行号和相应的值即可。
# tensorflow/tensorflow/python/framework/ops.py
# This class is a simple wrapper for a pair of `Tensor` objects:
class IndexedSlices(_TensorLike):
def __init__(self, values, indices, dense_shape=None):
"""Creates an `IndexedSlices`."""
_get_graph_from_inputs([values, indices, dense_shape])
self._indices = indices # 前向传播中取的那几个位置,也就是最后要更新的那几个位置
self._values = values # 这些位置所对应的梯度值
self._dense_shape = dense_shape # 矩阵原本的形状
# tensorflow/tensorflow/python/framework/sparse_tensor.py
class SparseTensor(_TensorLike):
def __init__(self, indices, values, dense_shape):
...
self._indices = indices
self._values = values
self._dense_shape = dense_shape
如果在前向传播过程中用了 lookup 之类的函数取了一个 Tensor 中的几行,那最后得出来的梯度就会是 IndexedSlices。这样存储有什么好处呢?比如我们的model里面的100000 10大小的embedding矩阵,当前来了个batch,lookup的index行号是[0, 201, 301],那么在更新整个embedding参数的时候,其实只需更新这三行的参数即可。所以IndexedSlices其实只存储了index = [0, 201, 301],和对应3 10大小的梯度。
来看一下更简单点的梯度下降法(实现Optimizer 暴露的抽象方法即可)
class GradientDescentOptimizer(optimizer.Optimizer):
def __init__(self, learning_rate, use_locking=False, name="GradientDescent"):
super(GradientDescentOptimizer, self).__init__(use_locking, name)
self._learning_rate = learning_rate
def _apply_dense(self, grad, var):
return training_ops.apply_gradient_descent(
var,
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
grad,
use_locking=self._use_locking).op
def _resource_apply_dense(self, grad, handle):
return training_ops.resource_apply_gradient_descent(
handle.handle, math_ops.cast(self._learning_rate_tensor,
grad.dtype.base_dtype),
grad, use_locking=self._use_locking)
def _resource_apply_sparse_duplicate_indices(self, grad, handle, indices):
return resource_variable_ops.resource_scatter_add(handle.handle, indices, -grad * self._learning_rate)
def _apply_sparse_duplicate_indices(self, grad, var):
delta = ops.IndexedSlices(
grad.values *
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
grad.indices, grad.dense_shape)
return var.scatter_sub(delta, use_locking=self._use_locking)
def _prepare(self):
self._learning_rate_tensor = ops.convert_to_tensor(self._learning_rate,name="learning_rate")
本文暂时没有评论,来添加一个吧(●'◡'●)