网站首页 > 开源技术 正文
作者:MacroZheng 链接:https://juejin.im/post/5e8c7d65518825736512d097
记得刚接触Elasticsearch的时候,没找啥资料,直接看了遍Elasticsearch的中文官方文档,中文文档很久没更新了,一直都是2.3的版本。最近又重新看了遍6.0的官方文档,由于官方文档介绍的内容比较多,每次看都很费力,所以这次整理了其中最常用部分,写下了这篇入门教程,希望对大家有所帮助。
简介
Elasticsearch是一个基于Lucene的搜索服务器。它提供了一个分布式的全文搜索引擎,基于restful web接口。Elasticsearch是用Java语言开发的,基于Apache协议的开源项目,是目前最受欢迎的企业搜索引擎。Elasticsearch广泛运用于云计算中,能够达到实时搜索,具有稳定,可靠,快速的特点。
安装
Windows下的安装
Elasticsearch
- 下载Elasticsearch 6.2.2的zip包,并解压到指定目录,下载地址:www.elastic.co/cn/download…
- 安装中文分词插件,在elasticsearch-6.2.2\bin目录下执行以下命令;
elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.2.2/elasticsearch-analysis-ik-6.2.2.zip
复制代码
- 运行bin目录下的elasticsearch.bat启动Elasticsearch;
Kibana
- 下载Kibana,作为访问Elasticsearch的客户端,请下载6.2.2版本的zip包,并解压到指定目录,下载地址:artifacts.elastic.co/downloads/k…
- 运行bin目录下的kibana.bat,启动Kibana的用户界面
- 访问http://localhost:5601 即可打开Kibana的用户界面:
Linux下的安装
Elasticsearch
- 下载elasticsearch 6.4.0的docker镜像;
docker pull elasticsearch:6.4.0
- 修改虚拟内存区域大小,否则会因为过小而无法启动;
sysctl -w vm.max_map_count=262144
- 使用docker命令启动;
docker run -p 9200:9200 -p 9300:9300 --name elasticsearch \
-e "discovery.type=single-node" \
-e "cluster.name=elasticsearch" \
-v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
-v /mydata/elasticsearch/data:/usr/share/elasticsearch/data \
-d elasticsearch:6.4.0
- 启动时会发现/usr/share/elasticsearch/data目录没有访问权限,只需要修改该目录的权限,再重新启动即可;
chmod 777 /mydata/elasticsearch/data/
- 安装中文分词器IKAnalyzer,并重新启动;
docker exec -it elasticsearch /bin/bash
#此命令需要在容器中运行
elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.4.0/elasticsearch-analysis-ik-6.4.0.zip
docker restart elasticsearch
- 访问会返回版本信息:http://192.168.3.101:9200/
Kibina
- 下载kibana 6.4.0的docker镜像;
docker pull kibana:6.4.0
- 使用docker命令启动;
docker run --name kibana -p 5601:5601 \
--link elasticsearch:es \
-e "elasticsearch.hosts=http://es:9200" \
-d kibana:6.4.0
- 访问地址进行测试:http://192.168.3.101:5601
相关概念
- Near Realtime(近实时):Elasticsearch是一个近乎实时的搜索平台,这意味着从索引文档到可搜索文档之间只有一个轻微的延迟(通常是一秒钟)。
- Cluster(集群):群集是一个或多个节点的集合,它们一起保存整个数据,并提供跨所有节点的联合索引和搜索功能。每个群集都有自己的唯一群集名称,节点通过名称加入群集。
- Node(节点):节点是指属于集群的单个Elasticsearch实例,存储数据并参与集群的索引和搜索功能。可以将节点配置为按集群名称加入特定集群,默认情况下,每个节点都设置为加入一个名为elasticsearch的群集。
- Index(索引):索引是一些具有相似特征的文档集合,类似于MySql中数据库的概念。
- Type(类型):类型是索引的逻辑类别分区,通常,为具有一组公共字段的文档类型,类似MySql中表的概念。注意:在Elasticsearch 6.0.0及更高的版本中,一个索引只能包含一个类型。
- Document(文档):文档是可被索引的基本信息单位,以JSON形式表示,类似于MySql中行记录的概念。
- Shards(分片):当索引存储大量数据时,可能会超出单个节点的硬件限制,为了解决这个问题,Elasticsearch提供了将索引细分为分片的概念。分片机制赋予了索引水平扩容的能力、并允许跨分片分发和并行化操作,从而提高性能和吞吐量。
- Replicas(副本):在可能出现故障的网络环境中,需要有一个故障切换机制,Elasticsearch提供了将索引的分片复制为一个或多个副本的功能,副本在某些节点失效的情况下提供高可用性。
集群状态查看
- 查看集群健康状态;
GET /_cat/health?v
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1585552862 15:21:02 elasticsearch yellow 1 1 27 27 0 0 25 0 - 51.9
- 查看节点状态;
GET /_cat/nodes?v
ip heap.percent ram.percent cpu load_1m load_5m load_15m node.role master name
127.0.0.1 23 94 28 mdi * KFFjkpV
- 查看所有索引信息;
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
green open pms xlU0BjEoTrujDgeL6ENMPw 1 0 41 0 30.5kb 30.5kb
green open .kibana ljKQtJdwT9CnLrxbujdfWg 1 0 2 1 10.7kb 10.7kb
索引操作
- 创建索引并查看;
PUT /customer
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open customer 9uPjf94gSq-SJS6eOuJrHQ 5 1 0 0 460b 460b
green open pms xlU0BjEoTrujDgeL6ENMPw 1 0 41 0 30.5kb 30.5kb
green open .kibana ljKQtJdwT9CnLrxbujdfWg 1 0 2 1 10.7kb 10.7kb
- 删除索引并查看;
DELETE /customer
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
green open pms xlU0BjEoTrujDgeL6ENMPw 1 0 41 0 30.5kb 30.5kb
green open .kibana ljKQtJdwT9CnLrxbujdfWg 1 0 2 1 10.7kb 10.7kb
类型操作
- 查看文档的类型;
GET /bank/account/_mapping
{
"bank": {
"mappings": {
"account": {
"properties": {
"account_number": {
"type": "long"
},
"address": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"age": {
"type": "long"
},
"balance": {
"type": "long"
},
"city": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"email": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"employer": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"firstname": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"gender": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"lastname": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"state": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
}
}
}
文档操作
- 在索引中添加文档;
PUT /customer/doc/1
{
"name": "John Doe"
}
{
"_index": "customer",
"_type": "doc",
"_id": "1",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 3,
"_primary_term": 1
}
- 查看索引中的文档;
GET /customer/doc/1
{
"_index": "customer",
"_type": "doc",
"_id": "1",
"_version": 2,
"found": true,
"_source": {
"name": "John Doe"
}
}
- 修改索引中的文档:
POST /customer/doc/1/_update
{
"doc": { "name": "Jane Doe" }
}
{
"_index": "customer",
"_type": "doc",
"_id": "1",
"_version": 2,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 4,
"_primary_term": 1
}
- 删除索引中的文档;
DELETE /customer/doc/1
{
"_index": "customer",
"_type": "doc",
"_id": "1",
"_version": 3,
"result": "deleted",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 2,
"_primary_term": 1
- 对索引中的文档执行批量操作;
POST /customer/doc/_bulk
{"index":{"_id":"1"}}
{"name": "John Doe" }
{"index":{"_id":"2"}}
{"name": "Jane Doe" }
{
"took": 45,
"errors": false,
"items": [
{
"index": {
"_index": "customer",
"_type": "doc",
"_id": "1",
"_version": 3,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 5,
"_primary_term": 1,
"status": 200
}
},
{
"index": {
"_index": "customer",
"_type": "doc",
"_id": "2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 0,
"_primary_term": 1,
"status": 201
}
}
]
}
数据搜索
查询表达式(Query DSL)是一种非常灵活又富有表现力的查询语言,Elasticsearch使用它可以以简单的JSON接口来实现丰富的搜索功能,下面的搜索操作都将使用它。
数据准备
- 首先我们需要导入一定量的数据用于搜索,使用的是银行账户表的例子,数据结构如下:
{
"account_number": 0,
"balance": 16623,
"firstname": "Bradshaw",
"lastname": "Mckenzie",
"age": 29,
"gender": "F",
"address": "244 Columbus Place",
"employer": "Euron",
"email": "bradshawmckenzie@euron.com",
"city": "Hobucken",
"state": "CO"
}
- 我们先复制下需要导入的数据,数据地址: github.com/macrozheng/…
- 然后直接使用批量操作来导入数据,注意本文所有操作都在Kibana的Dev Tools中进行;
POST /bank/account/_bulk
{
"index": {
"_id": "1"
}
}
{
"account_number": 1,
"balance": 39225,
"firstname": "Amber",
"lastname": "Duke",
"age": 32,
"gender": "M",
"address": "880 Holmes Lane",
"employer": "Pyrami",
"email": "amberduke@pyrami.com",
"city": "Brogan",
"state": "IL"
}
......省略若干条数据
- 导入完成后查看索引信息,可以发现bank索引中已经创建了1000条文档。
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open bank HFjxDLNLRA-NATPKUQgjBw 5 1 1000 0 474.6kb 474.6kb
搜索入门
- 最简单的搜索,使用match_all来表示,例如搜索全部;
GET /bank/_search
{
"query": { "match_all": {} }
}
- 分页搜索,from表示偏移量,从0开始,size表示每页显示的数量;
GET /bank/_search
{
"query": { "match_all": {} },
"from": 0,
"size": 10
}
- 搜索排序,使用sort表示,例如按balance字段降序排列;
GET /bank/_search
{
"query": { "match_all": {} },
"sort": { "balance": { "order": "desc" } }
}
- 搜索并返回指定字段内容,使用_source表示,例如只返回account_number和balance两个字段内容:
GET /bank/_search
{
"query": { "match_all": {} },
"_source": ["account_number", "balance"]
}
条件搜索
- 条件搜索,使用match表示匹配条件,例如搜索出account_number为20的文档:
GET /bank/_search
{
"query": {
"match": {
"account_number": 20
}
}
}
- 文本类型字段的条件搜索,例如搜索address字段中包含mill的文档,对比上一条搜索可以发现,对于数值类型match操作使用的是精确匹配,对于文本类型使用的是模糊匹配;
GET /bank/_search
{
"query": {
"match": {
"address": "mill"
}
},
"_source": [
"address",
"account_number"
]
}
- 短语匹配搜索,使用match_phrase表示,例如搜索address字段中同时包含mill和lane的文档:
GET /bank/_search
{
"query": {
"match_phrase": {
"address": "mill lane"
}
}
}
组合搜索
- 组合搜索,使用bool来进行组合,must表示同时满足,例如搜索address字段中同时包含mill和lane的文档;
GET /bank/_search
{
"query": {
"bool": {
"must": [
{ "match": { "address": "mill" } },
{ "match": { "address": "lane" } }
]
}
}
}
- 组合搜索,should表示满足其中任意一个,搜索address字段中包含mill或者lane的文档;
GET /bank/_search
{
"query": {
"bool": {
"should": [
{ "match": { "address": "mill" } },
{ "match": { "address": "lane" } }
]
}
}
}
- 组合搜索,must_not表示同时不满足,例如搜索address字段中不包含mill且不包含lane的文档;
GET /bank/_search
{
"query": {
"bool": {
"must_not": [
{ "match": { "address": "mill" } },
{ "match": { "address": "lane" } }
]
}
}
}
- 组合搜索,组合must和must_not,例如搜索age字段等于40且state字段不包含ID的文档;
GET /bank/_search
{
"query": {
"bool": {
"must": [
{ "match": { "age": "40" } }
],
"must_not": [
{ "match": { "state": "ID" } }
]
}
}
}
过滤搜索
- 搜索过滤,使用filter来表示,例如过滤出balance字段在20000~30000的文档;
GET /bank/_search
{
"query": {
"bool": {
"must": { "match_all": {} },
"filter": {
"range": {
"balance": {
"gte": 20000,
"lte": 30000
}
}
}
}
}
}
搜索聚合
- 对搜索结果进行聚合,使用aggs来表示,类似于MySql中的group by,例如对state字段进行聚合,统计出相同state的文档数量;
GET /bank/_search
{
"size": 0,
"aggs": {
"group_by_state": {
"terms": {
"field": "state.keyword"
}
}
}
}
- 嵌套聚合,例如对state字段进行聚合,统计出相同state的文档数量,再统计出balance的平均值;
GET /bank/_search
{
"size": 0,
"aggs": {
"group_by_state": {
"terms": {
"field": "state.keyword"
},
"aggs": {
"average_balance": {
"avg": {
"field": "balance"
}
}
}
}
}
}
- 对聚合搜索的结果进行排序,例如按balance的平均值降序排列;
GET /bank/_search
{
"size": 0,
"aggs": {
"group_by_state": {
"terms": {
"field": "state.keyword",
"order": {
"average_balance": "desc"
}
},
"aggs": {
"average_balance": {
"avg": {
"field": "balance"
}
}
}
}
}
}
- 按字段值的范围进行分段聚合,例如分段范围为age字段的[20,30] [30,40] [40,50],之后按gender统计文档个数和balance的平均值;
GET /bank/_search
{
"size": 0,
"aggs": {
"group_by_age": {
"range": {
"field": "age",
"ranges": [
{
"from": 20,
"to": 30
},
{
"from": 30,
"to": 40
},
{
"from": 40,
"to": 50
}
]
},
"aggs": {
"group_by_gender": {
"terms": {
"field": "gender.keyword"
},
"aggs": {
"average_balance": {
"avg": {
"field": "balance"
}
}
}
}
}
}
}
}
感悟
从正式成为一名程序员的那天起,注定要进行没有止境的学习,想要进阶高级或者专家,就要坚持每天都高效的学习,不要给自己的懒惰找借口,“什么我也想学习可是又没有资源”,这次我给你整理好了,我看你还有啥理由!私信回复【666】送你
- 上一篇: Solr索引库创建以及安装中文分词功能
- 下一篇: 基于Apache Solr搭建全文搜索服务器
猜你喜欢
- 2024-10-23 ES 基本知识(es基本介绍)
- 2024-10-23 maven打包jar包时如何打包本地jar文件
- 2024-10-23 记录自己搭建solr配置中文分词的过程供大家参考
- 2024-10-23 springboot整合websocket、solr(springboot整合rocketMQ)
- 2024-10-23 ElasticSearch安装ik分词插件(elasticsearch 安装ik分词器)
- 2024-10-23 12K的码农怎样蜕变为30k的架构师?找准方向,拒绝迷茫
- 2024-10-23 Lucene就是这么简单(好儿子今天妈妈就是你的女人了)
- 2024-10-23 5分钟带你了解Lucene全文索引(lucene索引原理)
- 2024-10-23 在.net core中进行中文分词方法(.net core hangfire)
- 2024-10-23 Elasticsearch-通过外网访问加入kibana,head「002」
你 发表评论:
欢迎- 最近发表
- 标签列表
-
- jdk (81)
- putty (66)
- rufus (78)
- 内网穿透 (89)
- okhttp (70)
- powertoys (74)
- windowsterminal (81)
- netcat (65)
- ghostscript (65)
- veracrypt (65)
- asp.netcore (70)
- wrk (67)
- aspose.words (80)
- itk (80)
- ajaxfileupload.js (66)
- sqlhelper (67)
- express.js (67)
- phpmailer (67)
- xjar (70)
- redisclient (78)
- wakeonlan (66)
- tinygo (85)
- startbbs (72)
- webftp (82)
- vsvim (79)
本文暂时没有评论,来添加一个吧(●'◡'●)