一、准备
1.1 安装
#方法1
install.packages("ggpubr")
#方法2
devtools::install_github("kassambara/ggpubr")
1.2 导入
library(ggpubr)
二、使用
2.1 带有均值线和地毯线的密度图
#构建数据集
set.seed(1234)
df <- data.frame( sex=factor(rep(c("f", "M"), each=200)),weight=c(rnorm(200, 55), rnorm(200, 58)))
# 预览数据格式
head(df)
# 绘制密度图
ggdensity(df, x="weight", add = "mean", rug = TRUE, color = "sex", fill = "sex",palette = c("#00AFBB", "#E7B800"))
#rug参数添加地毯线,add参数可以添加均值mean和中位数median
##备注说明
密度图展示不同性别分组下体重的分布,X轴为体重,Y轴为自动累计的密度,X轴上添加地毯线进一步呈现样本的分布;按性别分别组标记轮廓线颜色,再按性别填充色展示各组的分布,使用palette自定义颜色
2.2 带有均值线和边际地毯线的直方图
gghistogram(df, x="weight", add = "mean", rug = TRUE, color = "sex", fill = "sex",palette = c("#00AFBB", "#E7B800"))
2.3 箱线图+分组形状+统计
#加载数据集
data("ToothGrowth")
df1 <- ToothGrowth
p <- ggboxplot(df1, x="dose", y="len", color = "dose",
palette = c("#00AFBB", "#E7B800", "#FC4E07"),
add = "jitter", shape="dose")
#增加了jitter点,点shape由dose映射
p
2.4 箱线图+分组形状+统计
# 增加不同组间的p-value值,可以自定义需要标注的组间比较
my_comparisons <- list(c("0.5", "1"), c("1", "2"), c("0.5", "2"))
p+stat_compare_means(comparisons = my_comparisons)+ #不同组间的比较
stat_compare_means(label.y = 50)
2.5 内有箱线图的小提琴图+星标记
ggviolin(df1, x="dose", y="len", fill = "dose",
palette = c("#00AFBB", "#E7B800", "#FC4E07"),
add = "boxplot", add.params = list(fill="white"))+
stat_compare_means(comparisons = my_comparisons, label = "p.signif")+ #label这里表示选择显著性标记(星号)
stat_compare_means(label.y = 50)
#备注说明
#ggviolin绘制小提琴图, add = “boxplot”中间再添加箱线图,stat_compare_means中,设置lable=”p.signif”,即可添加星添加组间比较连线和统计P值按星分类。
2.6 条形/柱状图绘制(barplot)
data("mtcars")
df2 <- mtcars
df2$cyl <- factor(df2$cyl)
df2$name <- rownames(df2) #添加一行name
head(df2[, c("name", "wt", "mpg", "cyl")])
ggbarplot(df2, x="name", y="mpg", fill = "cyl", color = "white",
palette = "npg", #杂志nature的配色
sort.val = "desc", #下降排序
sort.by.groups=FALSE, #不按组排序
x.text.angle=60)
#柱状图展示不同车的速度,按cyl为分组信息进行填充颜色,颜色按nature配色方法(支持 ggsci包中的本色方案,如: “npg”, “aaas”, “lancet”, “jco”, “ucscgb”, “uchicago”, “simpsons” and “rickandmorty”),按数值降序排列。
2.6 条形/柱状图绘制(barplot)+按组进行排序
ggbarplot(df2, x="name", y="mpg", fill = "cyl", color = "white",
palette = "aaas", #杂志Science的配色
sort.val = "asc", #上升排序,区别于desc,具体看图演示
sort.by.groups=TRUE,x.text.angle=60) #按组排序 x.text.angle=90
2.7 偏差图绘制(Deviation graphs)+偏差图展示了与参考值之间的偏差
df2$mpg_z <- (df2$mpg-mean(df2$mpg))/sd(df2$mpg) # 相当于Zscore标准化,减均值,除标准差
df2$mpg_grp <- factor(ifelse(df2$mpg_z<0, "low", "high"), levels = c("low", "high"))
head(df2[, c("name", "wt", "mpg", "mpg_grp", "cyl")])
ggbarplot(df2, x="name", y="mpg_z", fill = "mpg_grp", color = "white",
palette = "jco", sort.val = "asc", sort.by.groups = FALSE,
x.text.angle=60, ylab = "MPG z-score", xlab = FALSE, legend.title="MPG Group")
2.8 偏差图绘制(Deviation graphs)+坐标轴变换
ggbarplot(df2, x="name", y="mpg_z", fill = "mpg_grp", color = "white",
palette = "jco", sort.val = "desc", sort.by.groups = FALSE,
x.text.angle=90, ylab = "MPG z-score", xlab = FALSE,
legend.title="MPG Group", rotate=TRUE, ggtheme = theme_minimal()) # rotate设置x/y轴对换
2.9 棒棒糖图绘制(Lollipop chart)+代替条形图展示数据
ggdotchart(df2, x="name", y="mpg", color = "cyl",
palette = c("#00AFBB", "#E7B800", "#FC4E07"),
sorting = "ascending",
add = "segments", ggtheme = theme_pubr())
2.10 棒棒糖图绘制(Lollipop chart)+修改样式
ggdotchart(df2, x="name", y="mpg", color = "cyl",
palette = c("#00AFBB", "#E7B800", "#FC4E07"),
sorting = "descending", add = "segments", rotate = TRUE,
group = "cyl", dot.size = 6,
label = round(df2$mpg), font.label = list(color="white",
size=9, vjust=0.5), ggtheme = theme_pubr())
2.11 棒棒糖偏差图
ggdotchart(dfm, x = "name", y = "mpg_z",
color = "cyl", # Color by groups
palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
sorting = "descending", # Sort value in descending order
add = "segments", # Add segments from y = 0 to dots
add.params = list(color = "lightgray", size = 2), # Change segment color and size
group = "cyl", # Order by groups
dot.size = 6, # Large dot size
label = round(dfm$mpg_z,1), # Add mpg values as dot labels,设置一位小数
font.label = list(color = "white", size = 9, vjust = 0.5), # Adjust label parameters
ggtheme = theme_pubr() # ggplot2 theme
)+geom_hline(yintercept = 0, linetype = 2, color = "lightgray")
2.12 Cleveland点图绘制
ggdotchart(dfm, x = "name", y = "mpg",
color = "cyl", # Color by groups
palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
sorting = "descending", # Sort value in descending order
rotate = TRUE, # Rotate vertically
dot.size = 2, # Large dot size
y.text.col = TRUE, # Color y text by groups
ggtheme = theme_pubr() # ggplot2 theme
)+ theme_cleveland() # Add dashed grids
本文暂时没有评论,来添加一个吧(●'◡'●)