引言
第一步 安装Docker
SET UP THE REPOSITORY
sudo apt-get remove docker docker-engine docker.io containerd runc sudo apt-get update sudo apt-get install \ apt-transport-https \ ca-certificates \ curl \ gnupg-agent \ software-properties-common curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - sudo add-apt-repository \ "deb [arch=amd64] https://download.docker.com/linux/ubuntu \ $(lsb_release -cs) \ stable"
INSTALL DOCKER CE
sudo apt-get update sudo apt-get install docker-ce docker-ce-cli containerd.io apt-cache madison docker-ce 选一个 for example, 5:18.09.1~3-0~ubuntu-xenial sudo apt-get install docker-ce=<VERSION_STRING> docker-ce-cli=<VERSION_STRING> containerd.io sudo docker run hello-world #运行通过就OK docker version #有版本提示就OK
第二步 安装Nvidia-Docker
# If you have nvidia-docker 1.0 installed: we need to remove it and all existing GPU containers docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -q -a -f volume={} | xargs -r docker rm -f sudo apt-get purge -y nvidia-docker # Add the package repositories curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \ sudo apt-key add - distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \ sudo tee /etc/apt/sources.list.d/nvidia-docker.list sudo apt-get update # Install nvidia-docker2 and reload the Docker daemon configuration sudo apt-get install -y nvidia-docker2 sudo pkill -SIGHUP dockerd # Test nvidia-smi with the latest official CUDA image docker run --runtime=nvidia --rm nvidia/cuda:9.0-base nvidia-smi #输出显卡信息就OK
第三步 安装Caffe2
docker pull caffe2ai/caffe2 # to test nvidia-docker run -it caffe2ai/caffe2:latest python -m caffe2.python.operator_test.relu_op_test # to interact nvidia-docker run -it caffe2ai/caffe2:latest /bin/bash 第四步 测试 python -c 'from caffe2.python import core' 2>/dev/null && echo "Success" || echo "Failure" #返回Success就OK python2 -c 'from caffe2.python import workspace; print(workspace.NumCudaDevices())' #返回1就OK #进入python输入 from caffe2.python import workspace #不报错就OK
小结
欢迎关注头条号:JAVA大飞哥
觉得收获的话可以点个关注收藏转发一波喔,谢谢大佬们支持!
私信本头条号:发送:“免费资料”就可以获取微服务、分布式、高并发、高可用,性能优化丶源码分析等等一些技术资料
最后,每一位读到这里的Java程序猿朋友们,感谢你们能耐心地看完。希望在成为一名更优秀的Java程序猿的道路上,我们可以一起学习、一起进步!都能赢取白富美,走向架构师的人生巅
本文暂时没有评论,来添加一个吧(●'◡'●)